Ridgelet transform on the sphere

نویسنده

  • Jason D. McEwen
چکیده

We first revisit the spherical Radon transform, also called the Funk-Radon transform, viewing it as an axisymmetric convolution on the sphere. Viewing the spherical Radon transform in this manner leads to a straightforward derivation of its spherical harmonic representation, from which we show the spherical Radon transform can be inverted exactly for signals exhibiting antipodal symmetry. We then construct a spherical ridgelet transform by composing the spherical Radon and scalediscretised wavelet transforms on the sphere. The resulting spherical ridgelet transform also admits exact inversion for antipodal signals. The restriction to antipodal signals is expected since the spherical Radon and ridgelet transforms themselves result in signals that exhibit antipodal symmetry. Our ridgelet transform is defined natively on the sphere, probes signal content globally along great circles, does not exhibit blocking artefacts, does not rely of any ad hoc parameters and exhibits an explicit inverse transform. No alternative ridgelet construction on the sphere satisfies all of these properties. Our implementation of the spherical Radon and ridgelet transforms is made publicly available. Finally, we illustrate the effectiveness of spherical ridgelets for diffusion magnetic resonance imaging of white matter fibers in the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wavelets, ridgelets and curvelets on the sphere

We present in this paper new multiscale transforms on the sphere, namely the isotropic undecimated wavelet transform, the pyramidal wavelet transform, the ridgelet transform and the curvelet transform. All of these transforms can be inverted i.e. we can exactly reconstruct the original data from its coefficients in either representation. Several applications are described. We show how these tra...

متن کامل

Extension of Ridgelet Transform to Tempered Boehmians

We extend the ridgelet transform to the space of tempered Boehmians consistent with the ridgelet transform on the space of tempered distributions. We also prove that the extended ridgelet transform is continuous, linear, bijection and the extended adjoint ridgelet transform is also linear and continuous. AMS Mathematics Subject Classification (2010): 44A15, 44A35, 42C40

متن کامل

A comparative study between Ridgelet PCA and PCA using different distance measure technique for 2D shape recognition and retrieval

In this paper, we have proposed a novel method for two-dimensional shape object recognition and retrieval. The proposed method is based on Ridgelet Principal Component Analysis (Ridgelet PCA). In our proposed approach we first use the ridgelet transform to extract line singularity features and point singularity features by applying the radon and wavelet transform respectively and then applying ...

متن کامل

A Novel Medical Image Dynamic Fuzzy Classification Model Based on Ridgelet Transform

Medical image classification as an important research topic both in image processing and biomedical engineering. The ridgelet transform has good directional selective ability to locally and sparsely in representing the image compared with the traditional wavelet transform. This paper proposes a novel classification model for medical image, which is using ridgelet transform and dynamic fuzzy the...

متن کامل

Digital Watermarking using Multiscale Ridgelet Transform

The multi-resolution watermarking method for digital images proposed in this work. The multiscale ridgelet coefficients of low and high frequency bands of the watermark is embedded to the most significant coefficients at low and high frequency bands of the multiscale ridgelet of an host image, respectively. A multi-resolution nature of multiscale ridgelet transform is exploiting in the process ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1510.01595  شماره 

صفحات  -

تاریخ انتشار 2015